

RAIR: Interference Reduction in Regionalized Networks-on-Chip

Lizhong Chen, Kai Hwang and Timothy M. Pinkston
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA, USA

{lizhongc, kaihwang, tpink}@usc.edu

Abstract—With the advent of many-core systems capable of
hosting multiple concurrently running applications, the traffic
characteristics of networks-on-chip (NoCs) may exhibit new
regional behaviors. By recognizing and exploiting these traffic
behaviors, the effectiveness of NoC interference reduction
techniques can be greatly improved. However, few works have
investigated these regional behaviors and their potential
impact on interference, leaving the opportunity largely unex-
plored. In this paper, we identify and characterize regional
behavior in NoC and propose RAIR, a region-aware interfer-
ence reduction technique that not only removes any
restrictions on the inter-region traffic patterns, but also
captures and exploits regional behavior throughout the design,
thus improving the effectiveness of interference reduction.
Evaluation using a cycle-accurate simulator shows that RAIR
can improve the average packet latency by up to 17% on
synthetic traffic patterns and up to 26% on PARSEC bench-
marks compared to state-of-the-art interference reduction
techniques.

Keywords: network-on-chip, regional behaviors, interference
reduction

I. INTRODUCTION

 Continuing advancement in manufacturing technology
has enabled multiprocessor systems-on-chip (MPSoCs) and
chip-multiprocessors (CMPs) to be implemented with tens
to possibly hundreds of cores on a single die. For example,
Intel’s Single-chip Cloud Computer incorporates 48 cores
onto a chip at 45nm [12], and Tilera’s TILE-Gx100 chip
integrates 100 general purpose cores at 40 nm in its latest
offering [21]. To meet the growing communication demand
among the escalating number of cores, networks-on-chip
(NoCs) have been proposed as the primary communication
subsystem due to its superior scalability. Meanwhile, multi-
ple applications can be running concurrently to utilize the
abundant computing resources offered by many-core chips.
As all applications on a chip share the same NoC substrate,
traffic from different applications may interfere with each
other, potentially causing considerable performance degra-
dation if not addressed appropriately. It is thus very
important to devise effective interference reduction tech-
niques for on-chip networks when multiple and possibly
distinct applications run concurrently.
 Of paramount importance to improving the effectiveness
of interference reduction is to identify and utilize the traffic

characteristics exhibited in the NoCs. While the issue of
reducing interference has been looming in recent years, very
little research has explored traffic behaviors resulting from
the mapping of multiple applications onto many-core NoCs.
A number of recent optimizations targeting system compo-
nents other than the NoC place threads belonging to the
same application closer to each other [20, 23] or move
frequently accessed cache data closer to the requesting cores
[13, 14, 15], so as to reduce the communication delay and
minimize overall traffic volume. These techniques essen-
tially transform a considerable amount of chip-wide traffic
into short-range traffic within physically-close groups or
regions, leaving a small amount of traffic needing to trav-
erse among regions – a case we call regionalized
networks-on-chip (RNoCs).
 However, until recently, most NoC interference reduc-
tion techniques (e.g., round-robin, age-based [1], and
application-aware prioritization [6]) are oblivious to region-
al traffic behaviors. These region-oblivious techniques are
inherently unable to exploit regional behavior and, thus,
have limited effectiveness in the case of RNoCs. Recent
works on multiple concurrently running applications have
started to consider regional behavior in their interference
reduction techniques [11, 16, 22]. However, these tech-
niques either place various strict restrictions on traffic
patterns (e.g., inter-region traffic is disallowed in [22]), or
reduce merely part of the possible interference in RNoCs,
thereby limiting their usefulness to only some particular
RNoC scenarios
 In this paper, we address the looming issue of traffic
interference reduction by proposing Region-Aware Interfer-
ence Reduction (RAIR), which captures the regional
behaviors of RNoC to minimize interference for generic
RNoCs without any restrictions on traffic patterns. Specifi-
cally, three mechanisms are devised to achieve this. The first
mechanism, VC regionalization, enables inter-region traffic
to traverse freely across the chip while still being treated
differently from intra-region traffic. The second mechanism,
multi-stage prioritization, solves the problem of how to
efficiently and effectively enforce traffic prioritization in
different stages of the pipelined router microarchitecture to
reduce interference, and the third mechanism, dynamic
priority adaptation, addresses the issue of recognizing and
utilizing load heterogeneity among regions and providing
starvation avoidance. The main contributions of this paper
are the following:

• Formation of RNoCs resulting from recent proposals
are analyzed and key regional behaviors are identified;

• A new region-aware interference reduction technique is
proposed consisting of VC regionalization, multistage
prioritization and dynamic priority adaptation, to take
full advantage of the regional behaviors exhibited in
RNoCs to improve effectiveness;

• Evaluation using a cycle-accurate simulator shows a
reduction of average packet latency by up to 17% on
synthetic traffic patterns and up to 26% on PARSEC
benchmarks.

 The rest of the paper is organized as follows. Section II
discusses the formation of RNoCs and identifies the result-
ing regional behaviors. Section III summarizes related work
on reducing interference and investigates their applicability
in the RNoC environment. Section IV provides the details of
the proposed region-aware interference reduction technique.
Section V presents our evaluation methodology and simula-
tion results. Finally, several related issues are discussed in
Section VI, and Section VII concludes the paper.

II. BACKGROUND ON REGIONALIZED NOC

A. Formation of Regionalized NoC
 A Regionalized Network-on-Chip (RNoC) refers to an
on-chip network in which traffic exhibits clustered regional
patterns, as if the network is divided into multiple regions. A
conventional NoC can be considered as a special case of
RNoC in which the number of regions equals one. To better
illustrate the concept of RNoC, three examples are described
below, each of which represents a class of techniques having
the similar goal of leveraging non-uniformity in many-core
chips.

1) Example 1: Application-to-core mapping
 The first class of techniques that leads to RNoC is
application-to-core mapping. This class of optimizations is
based on the observation that, in MPSoCs or CMPs with
multiple concurrently running applications, each application
may in turn spawn a few parallel threads working simulta-
neously on multiple cores. With non-uniform core-to-core
distance in large many-core chips, significant performance
improvement can be achieved when frequently communi-
cating threads belonging to the same application can be
placed closer by mapping them to cores1 with fewer hop
distance. For example, by using mapping policies based on
the above intuition instead of randomly assigning threads to
cores, over 53% bandwidth savings and 23% delay reduc-
tion are achieved in [20] and [23], respectively. This is
mainly because most of the previously chip-wide
long-distance traffic is now converted to short-distance
communications, thereby reducing both traffic volume and
latency. A direct result of these proximity-based optimiza-
tions is the formation of regionalized NoC as, essentially,
the multiple collaborating threads of an application are
clustered into physically-close groups through the mapping

1 We use the terms core and node interchangeably as a core in a chip is
abstracted to a node in the corresponding NoC.

process, and the majority of traffic occurs within each
application’s region with a small fraction of traffic travers-
ing among regions.

2) Example 2: Cooperative cache structure
 At the system level, there are a number of recent pro-
posals that initially target critical problems in system
components other than the NoC but in fact, indirectly
precipitate the occurrence of RNoC. For instance, several
techniques have been proposed to optimize cache structure
for many-core chips [13, 14, 15]. The idea of these ap-
proaches is that, instead of uniformly distributing data in
cache banks across the chip, active data that are needed by
an application are adaptively moved closer to the running
threads of that application. In this way, cache access time
can be greatly reduced. In [13], for example, L2 cache
access latency is reduced by 33%~54%, most of which
comes from the reduced traffic hops (e.g., request and reply
messages). Notice that, as more cached data can be accessed
in the local or nearby nodes, a considerable amount of
chip-wide traffic is transformed into regional traffic, essen-
tially resulting in an RNoC configuration.

3) Example 3: Coherence protocol optmization
 Another example is coherence protocol optimization for
on-chip server consolidation, where multiple virtual ma-
chines (VMs) run concurrently in a CMP, with each VM
having a designated region. In [19], a two-level coherence
hierarchy is proposed to accelerate coherence transactions
based on dynamic home nodes. The basic idea is to select
the home node of cache lines wisely so that the amount of
protocol messages that need to traverse outside their desig-
nated region are minimized. As a result, the
cycle-per-transaction is reduced by 15%~65% depending on
the applications, indicating that a large percentage of the
protocol transactions have been satisfied within a region.
Therefore, although the intention is to optimize coherence
protocols, a side-effect is an increase in intra-region traffic
and a decrease in inter-region traffic, thus indirectly chang-
ing the traffic pattern toward RNoC.

B. Regional Behaviors of RNoC
 In the above examples, while the degree of “regionality”
may differ, there are some common influences and behav-
iors affecting regionality that can be identified and
summarized by the following regional behaviors (RBs):

 RB-1: Multiple applications run concurrently in a
many-core chip, each consisting of one or more nodes;

 RB-2: Nodes belonging to the same application are
often clustered into a region;

 RB-3: Majority of traffic becomes intra-region with a
small fraction being inter-region, and

 RB-4: Different regions may have heterogeneous traffic
characteristics (e.g., different intensity)

 These regional behaviors raise new challenges and
opportunities for traffic interference reduction in on-chip
networks. For instance, not only can an application running
in one region benefit from interference reduction, but it may
also require interference reduction from applications in

other regions. This is particularly true in the above server
consolidation example where if one VM goes awry or is
under malicious attack, the remaining VMs should be
minimally affected. However, interference reduction in
RNoCs is much harder to achieve than before as we can no
longer strictly confine packets to flow within a region;
otherwise, an application would be unable to access certain
shared resources, such as memory controllers located
outside its region, to perform normal operations. In addition,
by taking into account the regional behaviors exhibited by
RNoCs, it is possible to achieve more effective interference
reduction and, thus, higher performance improvement for
multiple concurrently running applications.

C. Intra-region Traffic vs. Inter-region Traffic
 To facilitate the following discussion, we define a few
terms that are helpful in illustrating the traffic properties in
RNoC. The terms regional traffic and global traffic refer to
the intra-region traffic portion and inter-region traffic
portion of an application, respectively. Using the previous
examples, global traffic can be the traffic to and from
memory controllers located outside the region, the requests
and replies of cooperative cache data in other regions due to
misses in the local region, and the inter-VM data sharing in
server consolidation. In addition, for application A mapped
to region R of the RNoC, native traffic refers to the traffic in
region R that belongs to application A, and foreign traffic
refers to the traffic currently traversing region R but be-
longing to applications not mapped to that region. For
example, global traffic of application B (not mapped to
region R) is foreign traffic of region R when traversing R.
 In many-core chips, global traffic is usually more critical
to performance than regional traffic. Figure 1 depicts a
simple example of instruction execution in a core during a
program’s execution. Suppose the two LOAD instructions
on the left miss in the local cache and, therefore, packets P1
and P2 are sent to request data on other nodes. ADD cannot
be computed until both requested data are returned. Assume
P1 is regional traffic (i.e., the request can be satisfied within
the region where the core belongs). Now consider the
request in P2. As shown in the figure, if P2 is also regional
traffic, its latency should be similar to that of P1, and the
reply of P2 is back only slightly after the reply of P1. In
other words, the latency of P2 can be largely overlapped
with the latency of P1 (in a better case, the reply of P2 may
be back sooner than that of P1, and the latency is complete-
ly overlapped). However, if P2’ is global traffic (i.e., the

request can only be satisfied by the node in some other
region), then the reply of P2’ comes back much later than
that for P1. As a result, a large portion of the latency of P2’
cannot be overlapped, which incurs additional stall cycles
directly on the critical path of the program’s execution.
Therefore, compared with regional traffic, global traffic is
more likely to have higher criticality. Another factor that
affects the criticality of regional and global traffic is load
intensity. As observed in [6], low intensity traffic is usually
more critical than high intensity traffic (details will be
discussed in later sections). According to RB-3, global
traffic in the RNoC is likely to have lower load than region-
al traffic, thus making global traffic even more critical.

III. RELATED WORK AND MOTIVATION

 A few techniques have been proposed to tackle interfer-
ence reduction in on-chip networks, but they all have either
no or very limited region-awareness, as discussed below.

A. Region-oblivious Techniques
 Region-oblivious techniques are those that do not
distinguish the characteristics of different regions in the
on-chip network, thus are inherently unable to exploit
regional behavior to achieve effective interference reduction.
The early proposals in this category, such as round-robin
and oldest-first, are both application- and region-oblivious.
In these techniques, due to application-unawareness, packets
that are critical to an application are treated equally with
packets that are not critical to another application such that
more performance-critical packets are not accelerated over
less critical ones. When applied in RNoCs, these techniques
are even more ineffective as they also treat the regional
traffic equally with global traffic, which is usually not the
case considering their differences in packet latency and
traffic intensity.
 Recent region-oblivious techniques incorporate applica-
tion-awareness, which avoids the disadvantages of the
application-oblivious ones by taking application characteris-
tics into consideration. They are, however, still subject to
the limitations caused by their region-oblivious nature. For
example, STC [6] is an application-aware interference
reduction technique for conventional NoCs, based on
ranking the relative importance of applications. Among
concurrently running applications, STC prioritizes network
non-intensive applications (in terms of L1 misses per
instruction) over network intensive applications, and for

Figure 1: Example of performance criticality for regional and global traffic.

⁞

 LOAD R1, Addr1

 LOAD R1, Addr2

 ADD R3, R1, R2

⁞

Latency of P1

Latency of P2 (regional)

Latency of P2’ (global)

Additional stall due
to global packetStallCompute Compute

packets belonging to the same application, a round-robin
technique is used. The rationale behind STC is that: 1) low
intensity applications issue requests relatively infrequently,
so prioritizing these requests allows the applications to
make faster progress without burdening the network much;
2) low intensity applications are likely to have low MLP and,
hence, their requests are likely to be stall-time critical.
 While STC has been shown to be effective for conven-
tional NoCs, it does not consider the regional layout (RB-1
and RB-2 regional behaviors) of RNoC and the resulting
regional and global traffic classification (RB-3). Conse-
quently, if used in RNoCs, the prioritization of STC is
suboptimal both within and among applications. First,
within an application, regional traffic and global traffic are
always treated equally in STC when they should not be
because of the different criticalities of each traffic type as
mentioned before. Second, among applications, as Figure 2
shows, STC prioritizes both regional and global traffic of
network non-intensive application A over network intensive
application B (left scenario). However, because of the region
unawareness, STC cannot recognize and achieve prioritiza-
tions that differentiate regional and global traffic, such as
the one shown in the right scenario. Also, to avoid starvation,
packets in STC are divided into batches (e.g., based on time)
and older batches always have higher priority than younger
batches. In a regionalized NoC, for example, if a VM
assigned to a region becomes faulty and injects a considera-
ble amount of packets, batching may unnecessarily
prioritize those packets over other normal but younger
packets.
 In summary, without further work to incorporate re-
gion-awareness, the above techniques proposed for
conventional NoCs would have limited effectiveness when
applied to regionalized NoCs.

B. Region-aware Techniques
 Region-aware techniques aim to reduce interference in
regionalized NoCs by taking into account regional behaviors
in the first place. Techniques in this category can be further
classified based on whether they place restrictions on traffic
patterns or not. Restricted interference reduction techniques
assume that certain traffic patterns are disallowed in the
network in order to minimize interference. For example,
global traffic may not be allowed or can only be entered into
certain areas of the NoC. In contrast, non-restricted inter-

ference reduction techniques do not place any restrictions on
traffic patterns to reduce interference, hence have broader
application but are also much harder to realize.
 Logic-Based Distributed Routing (LBDR) [8, 22]
reduces region-aware interference by confining packets to
traverse only within a designated region via routing re-
strictions. Since no global traffic outside a region is allowed,
LBDR is a restricted technique. As each application must
also access the memory controllers (MCs) for on-chip cache
misses, LBDR requires each region to contain at least one
MC. For example, the mapping in Figure 3(a) is a viable
configuration but the mapping in Figure 3(b) is invalid as
the two middle regions cannot access any MC. In fact, with
16 cores, 4 MCs and 4 applications (each having 4 threads),
only

 4! ൫ଵଶଷ ൯൫ଽଷ൯൫ଷ൯൫ଷଷ൯ ൫ଵସ ൯൫ଵଶସ ൯൫ସ଼൯൫ସସ൯ൗ ≈ 14%

of all possible configurations is allowed, which greatly
restricts the opportunity to find the optimal applica-
tion-to-core mapping. Moreover, the number of regions that
can be accommodated on the chip is at most the number of
MCs. As a reference, Intel’s recent 48-core SCC chip [12]
has 4 MCs, supporting only a maximum of 4 regions if
LBDR is used. Therefore, the restrictions placed on the
global traffic in LBDR result in severe limitations.
 In [11], Kilo-NoC is proposed as a low overhead quali-
ty-of-service (QoS) scheme. Although it is designed for
on-chip service guarantees, it can be extended for the
purpose of interference reduction2. Kilo-NoC proposes an
elaborate design by taking advantage of certain topologies.
QoS rules are imposed only on a few selected routers in the
so-called shared regions (SRs). Nevertheless, the global
traffic in Kilo-NoC is restricted. For instance, the global
traffic may need to use a single-hop long-distance connec-
tion to “bypass” the intermediate region and reach the SR.
In addition, global traffic may need to detour through the SR
in order to enforce QoS. More importantly, Kilo-NoC
greatly depends on MECS-like topologies that can provide
rich connectivity. These restrictions that Kilo-NoC places on
the flow of global traffic and on the underlying network
topologies limit its usefulness to only particular RNoC
scenarios.

2 The differences between the interference issue focused in this paper and
the general QoS will be discussed in Section VI.

 Priority

High

Low

A.regional, A.global

B.regional, B.global

A.global, B.global

A.regional, B.regional

 Left Right

Figure 2: Prioritization on per-application basis is
possible in STC (left) but not on per-region basis (right).

(a) (b)

Figure 3: (a) Valid mapping and
(b) Invalid mapping in LBDR.

 A non-restricted technique, DBAR, is recently proposed
in [16] by Ma et al. As pointed out by the authors, DBAR
not only is a mechanism for load-balanced routing but also
serves as a technique to reduce inter-region interference.
The novelty is that, in the selection function, DBAR dis-
cards the redundant information generated by other regions,
thus reducing interference among different regions. Figure 4
illustrates this idea. Suppose region R0 has low load and
regions R1-R3 have high load as given by their shading. A
packet destined to X is currently in router S, so it needs to
evaluate the congestion status of the east and south direc-
tions. Different from a prior congestion-aware technique [9]
that uses congestion information along the entire path from
S-to-C and S-to-E, DBAR only uses the congestion infor-
mation along the path from S-to-A and S-to-D. In this way,
the high-load status of regions R1 and R2 will not interfere
with packets in region R0. Using the previously defined
terms, DBAR successfully avoids interference between
native traffic of different regions (e.g., no interference
between the native traffic in R0 and the native traffic in R1).
 However, DBAR cannot reduce interference between
the native and foreign traffic of a given region. Consider a
packet that is sourced from S, destined to Y and currently in
B (i.e., it becomes foreign traffic with respect to R1). Now,
even with DBAR, regardless of which direction the packet
will take next, it will inevitably be slowed down by the
heavy load condition in R1. Therefore, although inter-region
traffic is not strictly disallowed (i.e., unlike LBDR), DBAR
only works best when all packets are intra-regional. As
inter-region traffic must still be supported in RNoCs, a more
effective way would be to recognize all the four regional
behaviors involving both intra-region and inter-region traffic
and reduce their interference accordingly.

 In summary, on the one hand, priority-based re-
gion-oblivious techniques do not place any restrictions on
traffic patterns, but their inherent unawareness of regional
behaviors greatly limits their usefulness in RNoCs. On the
other hand, current region-aware techniques are built based
on the regional behaviors of RNoCs, but they either place
strict restrictions on traffic patterns, or reduce only part of
the possible interference in RNoCs, which limit their effec-
tiveness in generic RNoCs. A more effective technique is
proposed in the next section.

IV. REGION-AWARE INTERFERENCE REDUCTION

 We propose RAIR (region-aware interference reduction)
that captures the regional behaviors of RNoC to minimize
interference for generic RNoCs without any restrictions on
traffic patterns. To achieve this, we propose three mecha-
nisms that work cooperatively to meet existing challenges.
Our first mechanism VC regionalization answers the ques-
tion of how inter-region traffic can traverse freely across the
chip while still being treated differently from intra-region
traffic. The second mechanism Multi-stage prioritization
solves the problem of how to efficiently and effectively
reduce traffic interference in different stages of the pipelined
router microarchitecture, and the third mechanism Dynamic

priority adaptation addresses the issue of how to recognize
and utilize load heterogeneity among regions and provide
starvation avoidance. All three mechanisms take advantage
of the regional behaviors exhibited in RNoCs, thus improv-
ing the effectiveness of interference reduction.

A. Removing Restrictions
 To allow inter-region traffic to use any physical channel
freely in the chip but still be differentiated from intra-region
traffic of other applications, we need some way of separat-
ing the shared physical resources to reduce interference. In
the first mechanism, VC regionalization, virtual channels
(VCs) associated with a physical channel are classified into
regional VCs and global VCs. Both classes of VCs can be
used by any of the native or foreign traffic, but different
prioritization is imposed in each class so that native traffic
and foreign traffic are treated differently. Specifically, a
1-bit field is tagged to each VC to indicate the classification.
Figure 5 shows one possible example where VC0 and VC1
are global VCs and VC2 and VC3 are regional VCs. The
prioritization policy is that, in the global VCs, foreign traffic
always has higher priority than native traffic to reflect that
foreign traffic is typically more performance critical because
of its global nature. In the regional VCs, however, the
priority between native and foreign traffic is configured
dynamically to reflect the intensity difference between
native and foreign traffics at runtime, in addition to the
latency factor. This dynamic priority configuration is set by
DPA logic (dynamic priority adaptation) shown in Figure 5,
which makes the decision based on the relative criticality
among different traffic types (details will be discussed in
Section IV.C).
 Overall, by classifying virtual channels and adopting
dynamic prioritization, VC regionalization can achieve the
following advantages. First, inter-region traffic can freely
traverse any physical channels allowed by the routing
algorithm. Meanwhile, when necessary, it can be minimally
affected by the intra-region traffic by traversing global VCs
(always have higher priority). Second, VC classification is
realized using priority instead of strict partitioning, which
allows each type of traffic to access any virtual channels
(though with different priority). Hence, no VC resource is

Figure 4: DBAR becomes ineffective when packets
traverse outside the originating region (more
heavily loaded regions have darker shade).

R0 R1

R2 R3

S

X

A CB

D

E

Y

wasted even when one type of traffic is absent. Third, each
region only needs to maintain information for two flows,
namely native and foreign traffic. If the foreign traffic
consists of global traffic from multiple applications,
round-robin is used within the foreign traffic based on two
insights: 1) if multiple contending flows have light loads,
priority-based policies can only reap marginal benefit as the
contention is minimal in the first place; 2) global traffic
indeed has low load according to RB-3, which results from
the initial intention of RNoC to minimize chip-wide com-
munication. Therefore, we target at reducing the primary
contention between native and foreign traffic, and use
simple fair arbitration within the foreign traffic to reduce
complexity.

B. Enforcing Prioritization
 While VC regionalization fulfills the objective of
removing restrictions on traffic patterns by making virtual
channels “aware” of the existence of regions, it accomplish-
es only part of the objective of reducing interference as VCs
are not the only resource for which traffic flows are sharing
and competing. There are multiple arbiters within a router to
allocate different shared resources to consumers. In order to
reduce interference effectively among traffic flows, we
propose our second mechanism, multi-stage prioritization
(MSP), which not only enforces prioritization in multiple
arbitration steps in the router, but also takes into account the
characteristics of each step and the regional behaviors in
optimizing the prioritization. In a NoC composed of canon-
ical routers, each hop consists of routing computation (RC),
VC allocation (VA), switch allocation (SA), switch traversal
(ST) and link traversal (LT). There are four major arbitration
steps in these stages, and the design choices for each step
are explained below.

VA input arbitration (VA_in). In general, the routing
function may return multiple valid output VCs for a given
input VC. For example, in Figure 6(a), input VC0 is allowed
by the routing function to request output VC0, 2 and 4. The
function of VA_in is to return one of these requests for each
input VC. For example, for input VC0, the request to output

VC0 is granted (solid arrow) and the other two are denied
(dotted arrows). Note that each input VC performs arbitra-
tion independently and is free to request any desired output
VC without contention from other input VCs. Therefore, in
the proposed MSP, no change is made to VA_in as different
traffic flows do not content with each other yet at this
arbitration step. Hence, MSP incurs no additional perfor-
mance loss for VA_in.

VA output arbitration (VA_out). After VA_in, an output
VC may receive requests from multiple input VCs. For
example, in Figure 6(a), output VC0 may be requested by
input VC0, 3 and 4. The function of VA_out is to arbitrate
among these requests and grant at most one winner. This is
the arbitration step where we implement the priority policy
of VC regionalization. As discussed in the previous subsec-
tion, the output VCs tagged as global VCs are allocated with
higher priority to the input VC that contains packets of
foreign traffic, whereas the output VCs tagged as regional
VCs are allocated to the input VCs with priority determined
by the DPA logic. These two classes of output VCs with
differentiated priorities implicitly act as two non-strictly
separated resources for native traffic and foreign traffic.
Such separation prior to the SA stage greatly reduces the
chances of priority inversion and increase the effectiveness
of interference reduction. Also, in this step of VA_out, MSP
still maintains high VC utilization as the prioritization will
not leave an output VC idle if it is requested by any input
VC.

SA input (SA_in) and SA output (SA_out) arbitration.
Now that each requesting input VC has been allocated a
distinctive output VC, the SA stage will set up the crossbar.
Each input port has multiple input VCs, so the function of
SA_in is to select one requesting input VC within an input
port. For example, in Figure 6(b), input port 0 selects input
VC0 among inputs VC0~3. After SA_in, as multiple input
ports may request the same output port, SA_out is used to
choose one winner from these requests. For example, input
port 1 is granted to traverse the crossbar to output port 0.
During both SA_in and SA_out arbitrations, MSP chooses
either the native or foreign traffic to have higher priority as

····

Input n

Regional VC
VC 3

VC 2

VC 1

VC 0
Global VC

Output n

Output 0

OVC_n
OVC f DPA

VC Allocator Switch Allocator

Routing Computation App#

····

Figure 5: RAIR router microarchitecture. Light-shared
blocks are added; dark-shared blocks are modified.

 (a) (b)

Figure 6: Arbitration steps in (a) VA; (b) SA stage.

VC 0
VC 1
VC 2
VC 3

VC 4
VC 5
VC 6
VC 7

·

VC x
VC x
VC x
VC v

SA_in SA_out

Output 0

Output 1

Output n

0

1

n

VC 0
VC 1
VC 2
VC 3

0
1
2
3

VC 4
VC 5
VC 6
VC 7

4
5
6
7

·

VC x
VC x
VC x
VC v

x
x
x
v

VA_in VA_out

·

determined by DPA logic to enforce prioritization. Again,
prioritization in this step of MSP neither degrades crossbar
utilization nor wastes any bandwidth compared with a
round-robin policy, as no resource is left idle if it is re-
quested by any input VC. Note that the same priority
produced by DPA logic is used for VA_out, SA_in and
SA_out at a given time, so the priority is consistent among
the different stages.

C. Utilizing Load Heterogeneity
 We now illustrate why it is indispensable to have the
DPA logic to dynamically determine priority between native
and foreign traffic, and how the priority can be configured
appropriately. On-chip networks typically exhibit load
heterogeneity as long as more than one application is
running simultaneously. Recall that, in conventional NoCs,
STC utilizes load heterogeneity by prioritizing network
non-intensive applications over network intensive applica-
tions. In regionalized NoCs, while a similar relationship
exists between network intensity and criticality, additional
care should be paid to address the new load heterogeneity
across regions (RB-4) to avoid any potential abnormalities
and performance degradation. To achieve this, our third
mechanism, dynamic priority adaptation (DPA) prioritizes
native and foreign traffic according to their relative critical-
ity. To facilitate illustration, we analyze the prioritization of
DPA from the viewpoint of any chosen region R with
application A assigned to it. Assume currently R also has
inter-region traffic of another application B (i.e., B is as-
signed to another region). According to our definition,
traffic belonging to A is the native traffic to R and traffic
belonging to B is the foreign traffic to R. Since the relative
performance criticality depends on the nature of the traffic
(i.e., regional or global) and on the traffic intensity, there are
three different cases:
 (1) A and B have similar overall network intensity (i.e.,
both low load or both high load). Since the foreign traffic is
only a small portion of the overall traffic of B, the load of
foreign traffic in R would be lower than the load of native
traffic. Therefore, to benefit most from the prioritization,
DPA gives higher priority to the foreign traffic as it has
lower intensity (indicating higher criticality) and is global
traffic (also indicating higher criticality).
 (2) A is more network intensive than B (i.e., A has high
load whereas B has low load). Considering that the foreign
traffic is a small portion of the overall traffic of B, the load
of foreign traffic would be much lower than the load of
native traffic. Thus, DPA gives higher priority to the foreign
traffic for the similar reasons as in (1).
 (3) A is less network intensive than B (i.e., A has low
load whereas B has high load). In this case, it is subtle to
determine the relative criticality between native traffic and
foreign traffic. On the one hand, the low intensity of A
would signify to give higher priority to the native traffic,
similar to the motivation of STC. On the other hand, the
global nature of the foreign traffic would indicate to give
higher priority to foreign traffic. In order to balance between
these two factors and at the same time utilize the criticality

characteristics of global traffic, DPA gives higher priority to
foreign traffic by default, but will reverse the priority as
soon as the intensity of native traffic exceeds that of foreign
traffic.
 Combining (1)~(3), for a given region with DPA, native
traffic is given higher priority only when the relative inten-
sity of foreign traffic is larger than that of native traffic;
otherwise, foreign traffic is given higher priority. As foreign
traffic is the minority component of total traffic according to
RB-3, foreign traffic will have a larger chance of being
higher priority than native traffic, which is consistent with
the observation that global traffic is usually more critical
than regional traffic. To estimate the relative intensity, prior
work [3] shows that the number of occupied VCs in an input
port is a strong indicator of the load status. Therefore, DPA
uses similar VC information to assess intensity, but with two
additional techniques to tolerate variance. First, the status of
all VCs in a router is accounted for in counting the number
of occupied VCs for native (OVC_n) and foreign traffic
(OVC_f), instead of only the input port in which the re-
questing packet resides. This mitigates the inaccuracy
caused by the non-uniform VC status among different ports.
Second, hysteresis is used for priority transition. As shown
in Figure 7, the priority of native traffic does not transition
from low to high immediately after the ratio r of OVC_f
over OVC_n is greater than 1; instead, there is a hysteresis
process in which the priority only transitions after the ratio
is greater than (1+∆). Similarly, the priority transits from
high to low only after the ratio becomes smaller than (1-∆).
We observed from simulation that, values of ∆ between
0.1~0.3 typically render better performance with the best
case achieved at around 0.2, which is assumed for ∆ in our
evaluation. This hysteresis transition helps to tolerate the
temporal variation of VC utilization in a router.

D. Avoiding Starvation and Deadlock
 The above implementation of DPA already avoids the
starvation induced by prioritization. This is because the
relative priority and the ratio consist of a negative feedback
loop. For example, if native traffic occupies too many
resources as indicated by a very low ratio, it will be
switched into low priority. A similar negative feedback loop
exists for foreign traffic as well. Thus, no starvation can
occur in DPA due to this self-throttling attribute.
 Regarding deadlock, unlike [8, 11, 16], none of the three
proposed mechanisms constituting RAIR places any re-
strictions on traffic patterns or routing, so virtually any
deadlock avoidance or recovery routing algorithms can be
incorporated in RAIR to achieve load balance. We will

Figure 7: Hysteresis priority transition for native traffic.

priority

high

low

1-∆ 1 1+∆
r

evaluate the effectiveness of RAIR with two different
adaptive routing algorithms. In case of using dead-
lock-avoidance routing algorithms based on Duato’s theory
[7], if a coherence protocol has multiple message classes
such as MOESI, each message class is provided with
additional one set of escape VCs. However, all message
classes can share the same set of regional VCs and global
VCs.

E. Putting It All Together & Router Microarchitecture
 The three mechanisms with any deadlock-free routing
algorithm compose our proposed RAIR technique to reduce
interference for RNoCs. Figure 5 shows the modifications
needed to implement RAIR. Each router is tagged with the
application number that is assigned to it, and each packet
carries the application number to which it belongs. When
traversing a router, a packet is identified as either native
traffic if the above two application numbers match or
foreign traffic if not. The DPA logic keeps track of OVC_n
and OVC_f in two registers and determines the relative
priority between native and foreign traffic by comparing the
two register values in the hysteresis manner. The calculated
priority is used in VA_in, SA_in and SA_out arbitration
steps. Packets then go through these steps similar to the
pipeline of canonical routers but using the region-aware
prioritization rules of VC regionalization and MSP. As
RAIR introduces additional control dependence between
DPA and VA/SA, to remove the delay of DPA logic from the
critical path, we use the priority calculated from the previ-
ous cycle. This is based on the fact that the intensity
difference between two consecutive cycles is insignificant
and can largely be filtered by the hysteresis transition.
Overall, RAIR does not impose any particular restriction on
the traffic patterns and improves the effectiveness of inter-
ference reduction in RNoCs by recognizing and utilizing the
regional behaviors throughout the prioritization process.

V. EVALUATION

A. Simulation Methodology
 We use a cycle-accurate interconnection network simu-
lator, GARNET [2], to model the microarchitecture and
router pipeline discussed in Section IV. A 64-node mesh
network configured with 2, 4 and 6 regions is evaluated. To
provide fair comparison, all schemes under evaluation are
augmented with adaptive routing algorithms based on
Duato’s theory [7].
 Both synthetic traffic patterns and application traces
from multi-threaded PARSEC benchmarks [4] are used. For
synthetic traffic patterns, the simulator is warmed up for
10K cycles and then the average performance is measured
over another 100K cycles. We simulate uniform random
(UR), transpose (TP), bit complement (BC) and hotspot (HS)
traffic [5]. Packets are uniformly assigned two lengths: short
packets are 16B single-flit while long packets carrying 64B
data plus a head flit have 5 flits. For application traces,
traffic is obtained from full-system simulation (SIMICS [17]
plus GEMS [18] with sufficient warmup) configured as

shown in Table 1. The simulation infrastructure supports all
13 applications in PARSEC 2.0; of these, we present results
for blackscholes, swaptions, fluidanimate and raytrace as a
representative subset containing both low and high intensity
traffic.
 In the following subsections, the various mechanisms
and techniques composing RAIR are first evaluated indi-
vidually. We then combine them together as the complete
RAIR and compare with other region-oblivious and re-
gion-aware techniques.

B. Impact of Multi-stage Prioritization
 The contention among multiple concurrently running
applications is the combined effects of a series of interfer-
ences: the inter-region traffic of an application interferes
with the native traffic of several regions and in the mean-
time its own region has interference from the global traffic
of multiple other applications. In order to study the separate
impact of MSP on contention, we start with a simpler
scenario consisting of two applications. As shown in Figure
8, App 0 and App 1 are running on the left half and right
half of the chip, respectively. App 0 is configured with low
load uniform traffic (10% of its saturation load) and a
certain percentage p of its traffic is inter-region traffic. App
1 is configured with high load (90% of its saturation load)
but all of its traffic is intra-regional. In this way, the only
contention that can occur is between the inter-region traffic
of App 0 and the intra-region traffic of App 1. We sweep the
inter-region percentage p from 0% to 100% to assess the
impact of MSP under varying degree of contention.
 Figure 9 plots the average packet latency (APL) of both
applications for different schemes. RO_RR is a re-
gion-oblivious technique based on round-robin. RAIR_VA
is the RAIR technique with the region-aware rules of MSP
performed only at the VA stage, whereas in RAIR_VA+SA,
the rules of MSP are enforced at both VA and SA stages. It
can be seen that as p increases, all APLs increase due to two
reasons: 1) more traffic of App 0 becomes inter-regional,
thereby increasing the average hop count and the packet
propagation delay of App 0; 2) more contention takes place
between App 0 and App 1, increasing the contention delay
of both applications.
 Compared with RO_RR, RAIR techniques with MSP
can reduce the APL of App 0 significantly while incurring
little increase in the APL of App 1. This is because MSP
prioritizes the low intensity inter-region traffic of App 0
over the high intensity intra-region traffic of App 1, so that
the contention that App 0 experiences can be greatly re-
duced while the contention that App 1 experiences is not

Table 1: Full-system simulator configuration
Cores 64 Sun UltraSPARC III+, 1GHz
Private I/D L1$ 32KB, 2-way, LRU, 1-cycle latency
Shared L2$/bank 256KB, 16-way, LRU, 6-cycle latency
Memory latency 128 cycles
Block size 64 Bytes
Virtual Channel 4 per protocol class, atomic, 5-flit/VC
Link bandwidth 128 bits/cycle

affected much. This effect becomes more evident as p
increases. For example, when p is 100%, RAIR_VA+SA
reduces APL by 18.9% for App 0 with less than 3% increase
in APL for App 1. In addition, RAIR_VA+SA is more
effective than RAIR_VA across the range of p, illustrating
the necessity of enforcing prioritization in multiple arbitra-
tion steps.

C. Impact of Routing Algorithm
 The above evaluation adopts a typical adaptive routing
algorithm that uses the information available at the local
router (e.g., # of free VCs). To demonstrate the ability of
RAIR being compatible with other routing algorithms, we
evaluate RAIR with an enhanced adaptive routing algorithm,
DBAR [16], that leverages both local and non-local infor-
mation to improve load balance.
 Figure 10 presents the average packet latency of RO_RR
and RAIR with local adaptive routing and with DBAR
under the same two-application scenario. As can be seen, by
using DBAR, RAIR_DBAR can reduce the APL of both
App 0 and App 1 compared to RAIR_Local because of the
better load balance. Note that the APL of App 1 in
RAIR_DBAR is even lower than that of RO_RR_Local,
indicating that RAIR can well utilize advanced adaptive
routing algorithms to restore its slowdown in intra-region
traffic of App 1. For example, when p is 100%,
RAIR_DBAR avoids any latency degradation compared to
RO_RR_Local and reduces APL by 24.8% and 3.3% for
App 0 and App 1, respectively. Figure 10 also plots the APL
of using DBAR alone on top of RO_RR. Compared with
RO_RR_DBAR, RAIR_DBAR improves the APL of App 0
by 12.8% with only 1.8% degradation in the APL of App 1.
This illustrates that, while an adaptive routing algorithm can
reap additional benefits from better route selection, the
largest performance improvement comes from the conten-
tion reduction offered by the RAIR technique.

D. Impact of Dynamic Priority Adaptation
 To validate the need for DPA and examine its effective-
ness in utilizing load heterogeneity among regions, we

consider two contrasting scenarios. As depicted in Figure
11(a) and (b), both scenarios consist of four applications, in
which App 0 ~ App 2 have low loads and App 3 has high
load. In (a), 30% of the traffic of App 0 ~ App 2 are in-
ter-regional and towards App 3, whereas all traffic of App 3
is intra-regional. In (b), all traffic of App 0 ~ App 2 are
intra-regional, whereas 30% of App 3’s traffic is in-
ter-regional and randomly towards other applications.
 Figure 12(a) and (b) shows the reduction of average
packet latency of each application for different schemes,
corresponding to Figure 11(a) and (b). RAIR_NativeH
(alternatively, RAIR_ForeignH) denotes the RAIR tech-
nique without DPA setting native traffic (alternatively,
foreign traffic) to higher priority for all regions at all times.
It can be seen that, for scenario (a), RAIR_ForeignH has
lower average packet latency than RAIR_NativeH. This is
because, by prioritizing the low intensity foreign traffic
from App 0 ~ App 2 over high intensity native traffic of App
3 in region 3, the APLs of App 0 ~ App 2 can be reduced
substantially with little performance degradation of App 3.
However, for scenario (b), RAIR_NativeH is actually better
as most benefit comes from prioritizing the low-intensity
native traffic of App 0 ~ App 2 over high-intensity foreign
traffic from App 3. Thus, neither RAIR_NativeH nor
RAIR_ForeignH performs well for both cases, so dynamic
priority adaptation is indispensable. The fifth bar of each
series shows the reduction in APL for RAIR with DPA.
Overall, RAIR_DPA reduces APL by 12.8% and 12.2% for
case (a) and (b), respectively. Note that there could be a
slight improvement of RAIR_DPA over the better of
RAIR_NativeH and RAIR_ForeignH, as RAIR_DPA also
dynamically adjusts the relative priority between native and
foreign traffic among the three low load applications (i.e.,
App 0 ~ App 2). However, this difference is small due to the
light contention among those applications.

E. Effects of RAIR on Synthetic RNoC
 In this subsection, we evaluate the proposed RAIR
technique as a whole and compare it against other schemes
in a generic RNoC environment consisting of six concur-

25

35

45

55

65

75

0% 20% 40% 60% 80% 100%

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Inter-region traffic percentage of App 0

RO_RR_Local (App 0)
RO_RR_DBAR (App 0)
RAIR_Local (App 0)
RAIR_DBAR (App 0)
RO_RR_Local (App 1)
RO_RR_DBAR (App 1)
RAIR_Local (App 1)
RAIR_DBAR (App 1)

Figure 8: Two applications
with varying percentage of
inter-region traffic.

25

35

45

55

65

75

0% 20% 40% 60% 80% 100%

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Inter-region traffic percentage of App 0

RO_RR (App 0)
RAIR_VA (App 0)
RAIR_VA+SA (App 0)
RO_RR (App 1)
RAIR_VA (App 1)
RAIR_VA+SA (App 1)

Figure 9: Impact of multi-stage prioritization. Figure 10: Impact of routing algorithm.

App 0 App 1

rently running applications with differentiated load rates. As
shown in Figure 13, App 0, 2, 3 and 4 have low to medium
loads (10% to 30% of their corresponding saturation loads),
and App 1 and 5 have high load (90% of the saturation
loads). Each application generates three types of synthetic
traffic: 75% intra-region uniform random traffic, 20%
inter-region global traffic with various traffic patterns
(explained shortly), and 5% traffic to and from the 4 corner
nodes to mimic memory controller traffic.
 Four interference reduction schemes are compared.
RO_RR is a region-oblivious technique based on
round-robin. RO_Rank is an optimized version of STC – a
region-oblivious but application-aware prioritization tech-
nique. This optimized STC is assumed to be able to always
find the optimal application rankings during a given interval
based on load intensity. RA_DBAR is a region-aware
technique built on DBAR (we choose DBAR, as LBDR
cannot allow any global traffic and Kilo-NoC relies on
MECS in addition to other restrictions, which makes DBAR
the least restrictive region-aware technique available so far).
Finally, RA_RAIR is the proposed region-aware interfer-
ence reduction technique.
 Figure 14 shows the reduction of average packet latency
compared to RO_RR for different techniques. The synthetic
pattern for the global traffic component is uniform random
for the moment. On average, RA_DBAR reduces average
packet latency by 3.4%. This is mainly because, although
RA_DBAR recognizes the regional layout, it reduces
interference only when packets are in their originating
regions. Therefore, in this generic RNoC setting, it cannot
reduce interference effectively for global traffic that

traverses unrestrictedly. In contrast, although being re-
gion-oblivious, RO_Rank actually performs better than
RA_DBAR. It makes a trade-off by prioritizing low to
medium load applications over high load applications and
reduces average packet latency by 5.8%. However, it does
not distinguish the regional and global traffic across regions
and is also subjected to batching to avoid starvation, which
limits the maximum achievable latency reduction.
 The best performance is achieved by RA_RAIR because
of its awareness of regional behaviors. In RA_RAIR, the
foreign traffic of App 1 and App 5 can be prioritized over
the native traffic of other applications when DPA determines
that the global traffic has higher relative criticality for that
region. As a result, the improvement of APL for App 1 and
App 5 is only 1.3% less than RA_DBAR while the im-
provement in APL for App 0, 2, 3, 4 is 12.4% beyond that of
RA_DBAR. Compared with RO_RR, RA_RAIR reduces
APL by 10.1% when averaged over all applications.

F. Effects on Different Traffic Patterns
 To demonstrate that RAIR removes the restrictions on
traffic patterns that occur in other restricted techniques,
Figure 15 shows the average reduction in APL for different
synthetic global traffic patterns3, with other configurations
the same as the previous subsection. As can be seen,
RA_RAIR achieves an average APL reduction of 13.4%
over all traffic patterns compared to RO_RR, indicating that
RAIR does not place any implicit restrictions on the global

3 Due to space limitations, only the average value is shown. The relative
trend of individual applications is similar to Figure 14.

0

0.2

0.4

0.6

0.8

1

1.2

App 0 App 1 App 2 App 3 Average

Re
du

ct
io

n
of

 a
ve

ra
ge

 p
ac

ke
t l

at
en

cy

RO_RR_Local RO_RR_DBAR RAIR_NativeH RAIR_ForeignH RAIR_DPA

0

0.2

0.4

0.6

0.8

1

1.2

App 0 App 1 App 2 App 3 Average

Re
du

ct
io

n
of

 a
ve

ra
ge

 p
ac

ke
t l

at
en

cy

RO_RR_Local RO_RR_DBAR RAIR_NativeH RAIR_ForeignH RAIR_DPA

(a) (a)

(b)
Figure 12: Impact of dynamic priority adaptation.

 (b)

Figure 11: Two contrasting
scenarios to evaluate DPA.

Figure 13: Six-application scenario
with various global traffic patterns.

App 0 App 1

App 2 App 3

App 0 App 1

App 2 App 3

0 0 1 1 1 2 20

0 0 1 1 1 2 20

0 0 1 1 1 2 20

0 0 1 1 1 2 20

3 3 3 5 5 5 53

3 3 3 5 5 5 53

4 4 4 5 5 5 54

4 4 4 5 5 5 54

traffic and can reduce interference effectively for different
traffic patterns.

G. Effects on Applications
 We next examine an important capability of RAIR to
protect normal applications from adversarial traffic. As
depicted in Figure 16, four PARSEC applications are
running concurrently on the many-core chip. We model
malicious traffic (e.g., an elaborated attack, or simply an OS
bug) by adding uniform chip-wide global traffic with a load
rate of 0.4 flits/cycle/node. Figure 17 shows the slowdown
of average packet latency that is experienced by each
application when different techniques are used. As can be
seen, RO_RR performs worst with an average slowdown of
1.92 relative to the no adversarial traffic case. RA_DBAR
reduces the slowdown to 1.75 through limited region
-awareness. For RO_Rank, we assume that this STC-based
RO_Rank can optimally rank applications, so all packets
from the adversarial traffic have the lowest priority. Howev-
er, as all packets are still subject to batching and RO_Rank
does not allow the global traffic of normal low ranking
applications to be prioritized over the regional traffic of high
ranking applications, RO_Rank only reduces the slowdown
to 1.47, on average. Finally, RA_RAIR can identify the
adversarial traffic as foreign traffic to every region and
assign it a lower priority than the native traffic through

dynamic priority adaptation, thereby accelerating packets of
the native traffic. The average slowdown is reduced to 1.18
for RA_RAIR, which is 38%, 32% and 19% better than
RO_RR, RA_DBAR and RO_Rank, respectively.

VI. DISCUSSION

Number of Regional and Global VCs. The impact of the
relative quantity between regional and global VCs mainly
depends on the traffic patterns. When there are more region-
al VCs than global VCs, native traffic will have a larger
chance of getting high priority so that if foreign traffic has
lower load, it cannot be effectively accelerated over native
traffic. Similarly, when there are more global VCs than
regional VCs, in the case of foreign traffic having much
higher load, the native traffic needs to wait for a long delay
before successfully acquiring high priority. Therefore, to
support generic traffic patterns and simplify the implemen-
tation in practice, the number of regional VCs and global
VCs are assumed to be configured roughly the same in
RAIR.

Scalability and Overhead. We examine scalability in two
dimensions: number of cores and number of regions. First,
the DPA logic can be implemented with a couple of registers
and comparators such that overhead is small and remains
constant per router regardless of the NoC size. Also, unlike

0.5

0.6

0.7

0.8

0.9

1

UR BC TP HS Average

Re
du

ct
io

n
of

 a
ve

ra
ge

 p
ac

ke
t l

at
en

cy

RO_RR RA_DBAR RO_Rank RA_RAIR

0.5

0.6

0.7

0.8

0.9

1.0

1.1

App 0 App 2 App 3 App 4 App 1 App 5 Average

Low & medium load apps High load apps

Re
du

ct
io

n
of

 a
ve

ra
ge

 p
ac

ke
t l

at
en

cy

RO_RR RA_DBAR RO_Rank RA_RAIR

Figure 14: Average packet latency comparison of different
techniques under uniform random global traffic.

Figure 15: Reduction of average packet latency
under different global traffic patterns.

Figure 16: PARSEC simulation setup.

blackscholes swaptions

fluidanimate raytrace

Figure 17: Average packet latency slowdown on
PARSEC workloads with adversarial traffic.

0

0.5

1

1.5

2

2.5

blackscholes swaptions fluidanimate raytrace Average

Sl
ow

do
w

n
of

 a
ve

ra
ge

 p
ac

ke
t l

at
en

cy

RO_RR RA_DBAR RO_Rank RA_RAIR

STC, RAIR does not require any central control logic for
batching or determining application ranking. Therefore, the
number of cores can be easily scaled up without incurring
much overhead in RAIR. Second, each router in RAIR
maintains only two-flow status instead of per-region or
per-application status, so there is no additional overhead
with increased number of regions. Therefore, the number of
regions can be as much as the number of cores on a chip.
From the above two aspects, we conclude that RAIR has
good scalability.

Relation to Quality-of-Service. Interference reduction is an
important component of QoS, but QoS typically requires
more than that. As the name implies, QoS provides applica-
tions with equal or differentiated service guarantees in
addition to interference reduction. For example, it is able to
enforce the pre-determined bandwidth allocation set by the
OS, or provide end-to-end delay guarantees. Therefore, QoS
has broader objectives and is also more complicated to
implement than interference reduction alone (e.g., QoS
polices typically need to record and update per-flow infor-
mation). Due to these reasons, this paper compares RAIR
with other interference reduction techniques rather than QoS
mechanisms (such as [10, 11]). It is possible, however, to
integrate RAIR with prior QoS mechanisms to further
improve service quality, which can be investigated in the
future.

VII. CONCLUSION

 Many-core systems have enabled multiple applications
to run concurrently in a chip. In the meantime, interference
among traffic from different applications arises due to the
shared nature of on-chip networks. To reduce interference
effectively, traffic characteristics exhibited in the NoCs need
to be exploited. In this paper, we present a case for interfer-
ence reduction in regionalized NoCs, which results from a
series of recent optimizations that leverage non-uniformity
in many-core chips. We analyze the formation of RNoC
using three representative examples and also identify four
common regional behaviors. To address the limited region
awareness in existing techniques, a new region-aware
interference reduction technique (RAIR) is proposed. RAIR
cleverly removes restrictions on inter-region traffic patterns
and, therefore, is applicable to generic RNoCs. More im-
portantly, RAIR can dynamically determine the relative
criticality between native and foreign traffic, and take into
account the regional traffic characteristics in multi-stage
prioritization and starvation avoidance, thereby improving
the effectiveness of interference reduction. Simulation
results show considerable improvement in both synthetic
traffic patterns and PARSEC benchmarks, as compared to
other interference reduction techniques.

ACKNOWLEDGMENTS

 We sincerely thank the anonymous reviewers for their
helpful comments and suggestions. This research was
supported, in part, by the National Science Foundation
(NSF), grant CCF-0946388.

REFERENCES
[1] D. Abts and D. Weisser, "Age-based packet arbitration in large-radix

k-ary n-cubes," in ACM/IEEE Conference on Supercomputing, 2007.
[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, "GARNET: A

detailed on-chip network model inside a full-system simulator," in
International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 33-42, 2009.

[3] E. Baydal, P. Lopez, and J. Duato, "A family of mechanisms for
congestion control in wormhole networks," IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 16, pp. 772-784, 2005.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li, "The PARSEC
benchmark suite: Characterization and architectural implications," in
17th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 72-81, 2008.

[5] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks: Morgan Kaufmann Publishers Inc., 2003.

[6] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, "Application-aware
prioritization mechanisms for on-chip networks," in 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 280-291, 2009.

[7] J. Duato, "A new theory of deadlock-free adaptive routing in
wormhole networks," IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 4, pp. 1320-31, 1993.

[8] J. Flich, S. Rodrigo, and J. Duato, "An efficient implementation of
distributed routing algorithms for NoCs," in 2nd IEEE International
Symposium on Networks-on-Chip (NOCS), pp. 87-96, 2008.

[9] P. Gratz, B. Grot, and S. W. Keckler, "Regional congestion awareness
for load balance in networks-on-chip," in 14th International
Symposium on High Performance Computer Architecture (HPCA), pp.
203-214, 2008.

[10] B. Grot, S. W. Keckler, and O. Mutlu, "Preemptive virtual clock: A
flexible, efficient, and cost-effective QOS scheme for
networks-on-chip," in 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 268-279, 2009.

[11] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, "Kilo-NOC: a
heterogeneous network-on-chip architecture for scalability and
service guarantees," in 38th annual international symposium on
Computer architecture (ISCA), pp. 401-412, 2011.

[12] J. Howard, S. Dighe, et al., "A 48-core IA-32 message-passing
processor with DVFS in 45nm CMOS," in IEEE International
Solid-State Circuits Conference (ISSCC), pp. 108-109, Feb. 2010.

[13] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, "A
NUCA substrate for flexible CMP cache sharing," IEEE Transactions
on Parallel and Distributed Systems (TPDS), pp. 1028-1040, 2007.

[14] C. Jichuan and G. S. Sohi, "Cooperative caching for chip
multiprocessors," in 33rd International Symposium on Computer
Architecture (ISCA), pp. 264-275, 2006.

[15] C. Kim, D. Burger, and S. W. Keckler, "An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches," in 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 211-222, 2002.

[16] S. Ma, N. E. Jerger, and Z. Wang, "DBAR: an efficient routing
algorithm to support multiple concurrent applications in
networks-on-chip," in 38th Annual International Symposium On
Computer Architecture (ISCA), pp. 413-424, 2011.

[17] P. S. Magnusson, et al., "Simics: A full system simulation platform,"
IEEE Computer, vol. 35, pp. 50-58+12, 2002.

[18] M. K. Martin, et al., "Multifacet's general execution-driven multi-
processor simulator toolset," ACM SIGARCH Computer Architecture
News, vol. 33, pp. 92-99, 2005.

[19] M. R. Marty and M. D. Hill, "Virtual hierarchies to support server
consolidation," in 34th Annual International Symposium on Computer
Architecture (ISCA), pp. 46-56, 2007.

[20] S. Murali and G. De Micheli, "Bandwidth-constrained mapping of
cores onto NoC architectures," in Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp. 896-901, 2004.

[21] Tilera Corporation. http://www.tilera.com/products/processors
[22] F. Trivino, J. L. Sanchez, F. J. Alfaro, and J. Flich, "Virtualizing

network-on-chip resources in chip-multiprocessors," Microprocessors
and Microsystems, vol. 35, pp. 230-245, 2011.

[23] Z. Wenbiao, Z. Yan, and M. Zhigang, "An application specific NoC
mapping for optimized delay," in Intl. Conf. on Design and Test of
Integrated Systems in Nanoscale Technology, pp. 184-8, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

